Reg. No.				
iteg. ito.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

PG DEGREE END SEMESTER EXAMINATIONS - APRIL 2025.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: M.Sc., MATHEMATICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
II	PART-III	CORE-6	P23MA206	PARTIAL DIFFERENTIAL EQUATIONS

Date & Session: 28.04.2025/AN Time: 3 hours Maximum: 75 Marks Bloom's K-level Outcom Q. SECTION – A $(10 \times 1 = 10 \text{ Marks})$ No. **Answer ALL Questions.** The equation $\overline{\nabla^2 u + \lambda u} = 0$ called as. CO₁ K1 a) The biharmonic equation b) The Helmholtz equation c) The Poisson equation d) The heat equation The value B^2 - 4AC > 0 is ensure that from the equation Au_{xx} + Bu_{xy} CO₁ K2 2. + Cu_{yy} + Du_x + Eu_y + Fu = G. a) Hyperbolic Type b) Parabolic Type c) Elliptic Type d) none of these If the cauchy condition $u = f(\lambda)$ and $\frac{\partial u}{\partial n} = g(\lambda)$ on the curve L. CO₂ **K**1 3. where the cauchy data is/are. $f(\lambda)$ a) b) $g(\lambda)$ c) $f(\lambda) \& g(\lambda)$ d) none of these The characteristic equation of Cauchy problem is. CO₂ K2a) $A\left(\frac{\partial y}{\partial x}\right)^2 - B\left(\frac{\partial y}{\partial x}\right) + C = 0$ b) $A\left(\frac{\partial y}{\partial x}\right)^2 - B\left(\frac{\partial y}{\partial x}\right) + C \neq 0$ c) $A\left(\frac{\partial y}{\partial x}\right)^2 + B\left(\frac{\partial y}{\partial x}\right) + C = 0$ d) $A\left(\frac{\partial y}{\partial x}\right)^2 + B\left(\frac{\partial y}{\partial x}\right) + C \neq 0$ If u may be written as $Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G$, then CO₃ K1 the Dirichlet condition make sure that a) u is prescribed in and on boundary b) u is prescribed in a boundary c) u is prescribed on a boundary d) u is prescribed out of the boundary The equation $Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = 0$, then the K2 CO3 6.

			equation is elliptic a) A= -C b) A=C c) A=0 d) C=0
CO4	K1	7.	In the Neumann problem $\frac{\partial u}{\partial n} = f(s)$ is harmonic in D, it is also satisfied the following condition. a) $\int f(S)ds = 0$ b) $\int f(S)ds = n$ c) $\int f(S)ds \neq 0$ d) $\int f(S)ds \neq n$
CO4	K2	8.	$u\left(\rho,\theta\right)=\frac{1}{2\pi}\int_{0}^{2\pi}\frac{1-\rho^{2}}{1-2\rho\cos\left(\theta-\tau\right)+\rho^{2}}f\left(\tau\right)d\tau.$ Is called
			a) poison integral formula for a circleb) poison integral formula for a squarec) poison integral formula for a rectangled) none of these
CO5	K1	9.	If the equation
			$\nabla^{2} u = u_{rr} + \frac{2}{r} u_{r} + \frac{1}{r^{2}} u_{\theta\theta} + \frac{\cot \theta}{r^{2}} u_{\theta} + \frac{1}{r^{2} \sin^{2} \theta} u_{\varphi\varphi},$
			where $0 \le r < a$, $0 < \theta < \pi$, and $0 < \varphi < 2\pi$.
			Stand for a) Dirichlet Problem for a cube
			b) Dirichlet Problem for a cylinder c) Dirichlet Problem for a rectangle
			d) Dirichlet Problem for a Sphere
CO5	K2	10.	If the equation $\nabla^2 u = u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} + u_{zz} = 0$, for $0 \le r < a, 0 < z < l$.
			Stand for
			a) Dirichlet Problem for a cubeb) Dirichlet Problem for a cylinder
			c) Dirichlet Problem for a rectangle
0			d) Dirichlet Problem for a Sphere
Course	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B \text{ (5 X 5 = 25 Marks)}}{\text{Answer } \underline{\text{ALL}}} \text{ Questions choosing either (a) or (b)}$
CO1	K2	11a.	What are assumptions as in the case of the vibrating string to drive the equation for the vibrating membrane? (OR)
CO1	K2	11b.	To find canonical form of the equation $u_{xx} + u_{xy} + u_{yy} + u_{x} = 0$.
CO2	K2	12a.	$u_{tt} = 4 u_{xx}, x > 0, t > 0,$ $u(x, 0) = \sin x , x > 0,$ $u_t(x, 0) = 0, x \ge 0,$
			$u(x, 0) = 0, t \ge 0.$ (OR) solve
			$\mathbf{u}_{tt} = \mathbf{c}^2 \mathbf{u}_{xx}$
			$u(x,0) = \sin x$ $u_t(x,0) = \cos x$
CO2	K2	12b.	

CO3	КЗ	13a.	Solve
			$\nabla^2 \mathbf{u} = 0 \qquad 0 < \mathbf{x} < \pi \qquad 0 < \mathbf{y} < \pi$
			$u(x,0) = x \qquad 0 \le x \le \pi$
			$u(x,\pi)=0$
			$\mathbf{u}_{x}(0,\mathbf{y}) = 0$
			$\mathbf{u}_{x}(\pi, \mathbf{y}) = 0$
			(OR)
CO3	КЗ	13b.	State and prove Uniqueness Theorem for the Wave equation.
CO4	КЗ	14a.	Prove that, the solution of the Dirichlet problem, if it exists, is unique.
			(OR)
CO4	КЗ	14b.	The solution of the Dirichlet problem depends continuously on the boundary data.
CO5	K4	15a.	Discuss the Dirichlet Problem for a Cube. (OR)
CO5	K4	15b.	A dielectric sphere of radius a is placed in a uniform electric field E0. Determine the potentials inside and outside the sphere.

Course Outcome	Bloom's K-level	Q. No	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \underline{\text{ALL}}} \text{ Questions choosing either (a) or (b)}$
CO1	K4	16a.	Derive the two-dimensional wave equation. (OR)
CO1	K4	16b.	Solve the equation $y^2u_{xx} - x^2u_{yy} = 0$.
CO2	K5	17a.	To find the d'Alembert solution of the Cauchy problem for the one-dimensional wave equation. (OR)
CO2	K5	17b.	solve $u_{tt} = c^{2}u_{xx} \qquad 0 < x < 1 t > 0$ $u(x,0) = \sin(\pi x/1) \qquad 0 \le x \le 1$ $u_{t}(x,0) = 0 \qquad 0 \le x \le 1$ $u(0,t) = 0 \qquad t \ge 0$ $u(1,t) = 0 \qquad t \ge 0$
CO3	K5	18a.	Solve $ \begin{aligned} u_{tt} &= c^2 u_{xx} & 0 < x < 1 & t > 0 \\ u(x,0) &= f(x) & 0 \leq x \leq 1 \\ u_{t}(x,0) &= g(x) & 0 \leq x \leq 1 \\ u(o,t) &= 0 & t \geq 0 \\ u(l,t) &= 0 & t \geq 0 \\ \end{aligned} $ by method of separation. (OR)
CO3	K5	18b.	Solve

			$\begin{aligned} u_t &= k u_{xx} & 0 < x < 1 & t > 0 \\ u(0,t) &= 0 & t \ge 0 \\ u(l,t) &= 0 & t \ge 0 \\ u(x,0) &= x(l-x) & 0 \le x \le l \end{aligned}$
CO4	K5	19a.	Give the necessary condition for the existence of a solution of the Neumann problem. (OR)
CO4	K5	19b.	Derive the existence of a solution of the Dirichlet Problem for a Rectangle.
CO5	К6	20a.	The necessary condition for the existence of a solution to the Neumann problem for a rectangle. (OR)
CO5	К6	20b.	To determine the potential in a sphere for Dirichlet Problem for a sphere.